Machine Learning Based Segmentation of Shoreline Using Mean-Shift, Random Forest and Support Vector Machine

نویسندگان

چکیده

Kıyılar kara ve deniz sınırını oluşturan, belirli bir canlı ekosistemini ihtiva eden alanlardır. Suların iklim değişimine bağlı olarak çekilmesi veya yükselmesi, gelgit hareketleri, tropik ekosistemlerde hava olaylarına meydana gelen fırtına, hortum, kasırga vb. olaylarında, alanlarının karalardan ayrıldığı kıyı çizgisinin belirlenmesi önem arz etmektedir. Bu çalışma kapsamında Sentinel-2A uzaktan algılama görüntüsü üzerinde, makine öğrenmesi tabanlı mean-shift, rastgele orman (RO) destek vektör makinaları (DVM) yöntemleri uygulanmış olup, bölütleme sonrası sonuç görüntüleri doğruluk IoU metrikleri ile değerlendirilmiştir. Genel doğruluklar, için sırasıyla %97.23, %99.15 %98.68 bulunmuştur.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prognosis of multiple sclerosis disease using data mining approaches random forest and support vector machine based on genetic algorithm

Background: Multiple sclerosis (MS) is a degenerative inflammatory disease which is most commonly diagnosed by magnetic resonance imaging (MRI). But, since the MRI device uses of a magnetic field, if there are metal objects in the patient's body, it can disrupt the health of the patient, the functioning of the MRI, and distortion in the images. Due to limitations of using MRI device, screening ...

متن کامل

metal artifact reduction and segmentation of dental computerized tomography images using least square support vector machine and mean shift algorithm

segmentation and three‑dimensional (3d) visualization of teeth in dental computerized tomography (ct) images are of dentists’ requirements for both abnormalities diagnosis and the treatments such as dental implant and orthodontic planning. on the other hand, dental ct image segmentation is a difficult process because of the specific characteristics of the tooth’s structure. this paper presents ...

متن کامل

Predicting the cause of kidney stones in patients using random forest, support vector machine and neural network

Background: Today, with the advancement of technology in various fields, the importance of recording data in the field of health is increasing so much that for many diseases around the world, including kidney disease, registration systems have been set up. This is happening in our country and in the future, the number of these systems will increase. The medical data set contains valuable inform...

متن کامل

Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)

Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...

متن کامل

Monthly rainfall Forecasting using genetic programming and support vector machine

Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Çukurova Üniversitesi Mühendislik Fakültesi Dergisi

سال: 2022

ISSN: ['2757-9255']

DOI: https://doi.org/10.21605/cukurovaumfd.1190597